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A disturbance of finite amplitude A, which is periodic in the direction of the axis 
of the channel, is superimposed on plane Poiseuille flow, and the subsequent 
development of the disturbance is studied. The disturbance is represented by an 
expansion in the eigenfunctions of the Om-Sommerfeld equation with co- 
efficients which are functions of the time, and an accurate numerical solution 
of the truncated system of non-linear ordinary differential equations for the 
coefficients is obtained. 

It is found that even for Reynolds numbers R less than the critical value R,, 
the flow breaks down when h exceeds a critical value A@). This is shown in 
figure 11 for the case when the initial disturbance is represented by the first mode 
of the Orr-Sommerfeld equation. The development of this type of disturbance 
is illustrated in figures 1 , 3  and 13 and, for the case of a higher-order mode initial 
disturbance, in figure 14. Near the time of breakdown, the curvature of the modi- 
fied mean flow changes sign (figure 15), but a disturbance may die down even 
after a reversal in the sign of the curvature has taken place (see figure 2). 

The stability of plane Poiseuille flow to disturbances of finite amplitude is 
affected by the characteristics of the higher-order modes of the Orr-Sommerfeld 
equation. As shown in figures 4,10, and 12, and in figures 5 , 6 ,  and 7, these modes 
are either of a ‘boundary type’, characteristic of the region near the wall, or 
of an ‘interior type’, characteristic of the centre of the channel. The modes in 
the transition zone, where the two types merge, are easily amplified through 
mutual constructive interference, even though individually they have high 
damping coefficients. It is these transition modes which are mainly responsible 
for the breakdown through finite amplitude effects. 

1. Introduction 
In the literature on hydrodynamic stability, Landau’s (1944) paper stands out. 

It purports to reveal the essential physical factors controlling the initiation 
of turbulence. In  Landau’s picture, the transition into turbulent motion occurs 
by a succession of perturbations each starting with an initial dynamic instability 
which, however, does not grow exponentially large, but is braked at  a high 
terminal level by finite amplitude effects. The phases of the perturbation at  the 
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termination of each spasm are largely arbitrary, and this phase-indeterminacy 
he considers to be basic to the statistical nature of turbulent motion. Landau’s 
model naturally has appeal to experts in statistical mechanics. It must be pointed 
out, however, that in his discussion, which is of a qualitative nature only, Landau 
does not offer proofs for his assertions. Yet these assertions on turbulence are 
intriguing, in view of the success with which similar predictions of his have met 
in many branches of physics. 

One approach in gaining insight into the mechanism of the initiation of turbu- 
lence is to study numerically disturbances inidealized basic flows, where, however, 
we can attempt to take full account of the finite-amplitude aspect of the dis- 
turbance. In  this investigation we start initially with plane Poiseuille flow in the 
x direction: 

4o = y-4y3,  ( - 1  < y < 1). J 
At time t = 0 there is superimposed on the plane Poiseuille flow a disturbance of 
finite amplitude which is periodic in x and of wavelength (2m/a) .  The resulting 
stream function 4 is given by 

m 

@ = 40 + x f,(y, t )  e-iunx, 
n=--a) 

where, because of the reality conditions, we must have 

the bar denoting complex conjugate. The restriction to periodicity of the dis- 
turbance in the x direction is of course an artificial one, and practically precludes 
the possibility of checking the results experimentally. However, under this 
simplifying assumption, the mathematical problem can be reduced to a system 
of ordinary differential equations whose solution can be achieved without 
ambiguity as to the accuracy of the results. Certain qualitative features, which 
these results exhibit, would be expected to apply also to more general types of 
disturbance. Granted the simplifying assumption of periodicity in the direction 
of main flow, our aim has been to retain enough of the non-linear terms so as to 
be able to study the stability in the whole a-R plane, rather than only in the 
vicinity of the apext of the ‘neutral curve’, as was done by Stuart (1960), 
Watson (1960) and Eckhaus (1965). 

2. Method of solution 
When substituted into the Navier-Stokes equation, 

(4) 
av2+ a + a v +  a+avz$ 1 

at ay ax ax ay R 
= - V4$, 

The apex of the neutral curve in the a-R plane occurs a t  the point a, = 1.020548, 
R, = 5772.22.Neartheapex, theneutralcurveisgivenbyR = R,+l.l x 105 (a-a,)2+ .... 
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( 2 )  leads to (see Eckhaus 1965, p. 98; Watson 1960) 

fiv - 2a2nvn +- a%”f, - R8/at(fn - a”f,) 

+iaB[(1-y2+~o)  #n-aznn”f,)+(2-fo)fn] = iaRK,, ( 5 )  
n- 1 

k = l  

+ k= I; 1 [ - ~ ~ k g n + k - ( n + I c ) ~ k g g , + k + I C f , + k 8 k + ( n + k ) f n + , ~ k , I  (n 2 J-), (6) 

where g, = f, - azn2fn, (7) 

K:= 2 CVk4n-k-  (n-  &)fkgn-kl 

00 

and dots signify differentiation with respect to y. 
The mean flow Z(y,t) is, from ( 2 ) ,  given by 

Z(y, t) = (a$/ay) = 1 - Y2 +fo(y, t ) .  (8) 

where 4 denotes the imaginary part. We integrate (9) into 
m a 

at O -  k = l  
fo-R--f - 2aR4 C kfk,&. 

It can be shown (Stuart 1960, Watson 1960) that putting the constant of integra- 
tion in (10) equal to zero is equivalent to making the assumption that the mean 
pressure-gradient remains unchanged by the perturbation. This would be 
realized in practice if the mean pressure is maintained constant both at the intake 
of the channel and at the outflow. 

We shall truncate the expansion ( 2 )  at n = 3, and will investigate the domain 
of the variables where the neglect of the truncated terms can be justified. A suit- 
able representation forf,, which satisfies the boundary condition of the vanishing 

The other functions we expand in terms of the even eigenfunctions &(y) of the 
Orr-Sommerfeld equation, 

@kv - 2a2n2& + u4n4& + ianR[( 1 - y2 - ck) (& - a2n2&) + 2&] = 0, (12) 

1.’ = 1 , 2 ,  ..., (13) 

(14) 

which satisfy the boundary conditions 

&(1) = &(1) = $;( - 1) = &( - 1) = 0. 

The eigenfunctions &(y) of the system adjoint to (12) 

&Iv - 2a2n2& + a%4& + ianR[( 1 - y2 - ca) (& - a2&) - 4y&] = 0, (1  5) 

which satisfy the boundary conditions (14), have the same eigenvalues c;, and 
meet the orthogonality condition (Eckhaus 1965) 
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For the q5; we adopt the normalization 
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K(Y = 0)  = 1, 

while (16) in turn fixes the normalization of &. 
In  (2), let 

f3(? l ,  t )  = i &(t)  45w. (20)  
u= 1 

Substituting (1 1 )  into (10) and equating Fourier coefficients, we get 

rm - cos [(G - 4) 7 1 ~ 3  pm &dy. (22) 
y r  -1: where 

Substituting now (18), (19) and (20 )  in (5) for n = 1, 2 and 3 respectively, and 
making use of the orthogonality condition (le), we are led to the following system 
of equations for the determination of the functions Bv(t), D,(t) and E,(t): 

S K  

dBv -- - - iae; B, + 2ia 2 C A ,  B,QZ 
at u = l 7 = 1  

S K  

rfn.= 2&ccc;DU+4ia 2 AuDTQ; 
dt o=l  r = 1  

K K  K K  

+ 2ia'C c Bl Bj qzj + 2ia c x Bi Ej rilj7 ( 2 4 )  
1-1 j = 1  1 = 1 j = 1  
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Equations (21), (23), (24) and (25) constitute a system of ordinary non-linear 
differential equations for the determination of the functions A,(t), B,(t), DJt)  
and E,(t), where granges from 1 to s and u from 1 to K. We have salved this system 
using Nordsieck’s method (Nordsieck 1963, p. 241). In this met,hod, the size of 
the step of integration is regulated automatically during the course of integra- 
tion so as to maintain a uniform accuracy of prescribed degree. The truncation 
limits adopted were K = 21, s = 60. The results for s = 30 were close to those for 
s = 60. 

3. Discussion of results 
We have solved the system (23), (24) and (25) under the following initial con- 

ditions. For t < 0 we have the laminar plane Poiseuille flow, with the parabolic 
velocity profile as given in (1).  At t = 0 we superimpose on the parabolic flow 
a disturbance periodic in x and represented in (18) by the first mode (v = 1) 
only of the Orr-Sommerfeld equation, with an amplitude A:  

B,(O) = A, (32) 

B”(0) = 0 ( u  = 2, ..., K ) .  (33) 

The higher harmonics also vanish initially 

D,,(O) = E”(0) = 0 (v = 1,2 ,  ..., K). (34) 

It follows that the modification of the mean flow, as represented by f, in ( 1  l ) ,  
also vanishes initially. 

Figure 1 represents the development in time of disturbances, when the initial 
amplitude h in (32) is below the critical value hi, and the disturbance dies down. 
In the case of h = 0.010, represented by the dotted curves, the amplitude of 
the first mode B,(t) decays almost according to its own decrement exp ( -&t ) ,  
where cii is the imaginary part of the first eigenvalue of the Orr-Sommerfeld 
equation (12). The only manifestation of non-linear effects is shown by the 
emergence of the curve B, at t = 9.0 and its persistence above the threshold 
level of 0.001 until t = 13.6. The curvature of the mean flow, which is given by 
( 2  -fo), varies by less than 10 % from its value of 2 in the laminar flow. The second 
case shown in figure 1, with h = 0.013, is just on the verge of the instability limit. 
Although B,(t) eventually decays with time, the quadratic terms in the hydro- 
dynamic equations cause the excitation (from zero) of a host of higher order 
modes B,(t) in the expansion (18) for f,(y, t ) ,  as well as of some modes D,(t) in the 
expansion of the second harmonic function fi(y, t )  in (19). At the height of the 
development of the secondary disturbance, the curvature of the mean flow even 
becomes negative, as is shown in figure 2. The profile of the mean velocity, 
however, does not deviate by more than about 1 yo from the parabolic distribu- 
tion. We note that nowhere in figure 1 do the coefficients E,,(t) off&/, t )  in (20) 
emerge above the 0.001 level. 

For the higher value of h = 0.014 the disturbance is unstable, and the flow 
breaks down, as is shown in figure 3. In order not to obscure the graph we have 
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FIGURE 1. Variation with time of the coefficients in the expansions (18), (19) and (20). 
Initially, B, = 0.010 and 0-013 respectively, and the other coefficients are zero. The 
motion is stable. 
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FIGURE 2. The profile of the curvature of the mean flow (2 -fo) for the case 

h = 0.013 in figure 1. At t = 0 and at t -+ co,fo = 0. 
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not entered in this figure some late-emerging modes from the Dv’s. Also omitted 
were some EV7s which emerge after the appearance of Ell, E12 and E14. Not only 
are the coefficients D,(t) in the second harmonic function f2(y, t) excited, but also 
the coefficients EV(t) of the third harmonic functionf,(y, t) in (20) begin to emerge 
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FIGURE 3. Variation with time of the coefficients in the expansions (18), (19) and (20) 
Initially B,(O) = 0.014, and all the others zero. The motion is unstable. 

after t = 12.2. When the latter become appreciable, our analysis no longer 
represents the real flow, since the truncation at n = 3 in the expansion (2) be- 
comes of doubtful validity. Here the curvature becomes negative after t = 10.9. 
Subsequently, many zones of negative curvature develop in the profile, but our 
analysis then becomes questionable. 
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The development of the instability shown in figure 3 is probably valid through 
t = 13. Thereafter, the third harmonic, given in (20), grows to a magnitude which 
begins to cast doubt on the justification for the neglect of the higher order 
harmonics. Even then, the cut-off at the 21st mode (v = 21) is still not manifestly 
violated, as evidenced by the rapid decrease of the coefficients for high values of v. 

4. Excitation of the higher order modes 
In the examples shown in figures 1 and 3, we start initially with a disturbance 

of the purely first mode, and subsequently find that there appear higher-order 
modes which are generated by self-excitation through the non-linear terms in 
the hydrodynamic equations. The way the higher order modes are excited seems 
to be peculiar. In the case of A = 0.013 shown in figure 1 ,  it is the ninth-order 
mode B, of the first harmonic that is first excited. Similarly, in the unstable 
case of A = 0.014 in figure 3, it is the group B,, B,, B, and B, that is excited, arid 
their first appearance is in that order. This phenomenon reflects an intrinsic 
structure of the eigenfunctions of the Orr-Sommerfeld equation which has not 
been recognized hitherto. Figure 4 gives the location of the eigenvalues CX of the 
first harmonic (n = 1) in the complex c plane. The order-number v has been 
assigned mostly according to the size of the imaginary part ci i .  We note that the 
eigenvalues group themselves into two classes, which later merge. In the first 
class, which includes modes of order v = 1, 3, and 6, the phase-velocity of the 
mode c;? is small, whereas in the second group, which lie along the sequence 
v = 2 ,4 ,5 ,  . . . , cir is close to the maximum speed of 1 of the mean flow at the centre 
of channel. Even clearer separations into the two classes is shown in figures 10 
and 12. We shall designate the first class as boundary modes, since they propagate 
with a speed appropriate to the neighbourhood of the wall in the parabolic flow, 
while the second class we shall designate as interior modes, since their speed of 
propagation is characteristic of the centre of the channel. The difference in the 
two cIasses of modes is brought out in figure 5, where we have plotted the absolute 
value of the vorticity Iy;ll for the first and second modes in the case a = 1,  
Ii = 5000. We note that in the first mode the vorticity Iy:l is concentrated near 
the wall, while in the second mode the vorticity 1y;I is concentrated near the 
centre of the channel. This localization is also characteristic of the respective 
phase-velocities shown by the arrows. In  figure 6, the dashed curves are the vor- 
ticity functions for the interior modes, and the solid curves for the boundary 
modes. for the case a = 1, R = 2000 shown in figure 4. The nodal characteristics 
of the higher order modes are illustrated in figure 8. It is seen that while the func- 
tion IyizI in figure 7 is dominated mainly by a single peak, the function yi2 itself. 
shown in figure 8, has a complicated internal structure with many nodes charac- 
teristic of the high order of the mode. Similar high nodal features are shown by 
$2 and & in figure 9. 

The most sensitive modes to be excited are v = 8 and 9 (figure 4), which lie 
in the c plane at  the junction of the two branches. Similarly, in the case of the 
second harmonic shown in figure 10, the most sensitive modes are &, & and 
#:,,, which are located at the junction of the two classes. In  the third harmonic it is 
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FIGURE 4. The eigenvalues c; = c;b+ic;’, of the On-Sommerfeld equation (12) 
belonging to the first mode n = 1. a = 1, R = 2000. 

-+Y 
Frarm~ 5. The profile of the absolute value of the vorticity y: = 4: - tc2 4; of the eigen- 
functions of the first harmonic (n = 1). The arrows show the magnitude of the phage- 
velocity c:, and c:, of the first and second mode. a = 1, R = 6000. 
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+Y 

FIQUKE 6. The distribution of the absolute value of the vorticity 1y;l for the modes shown 
in figure 4. a = 1, R = 2000. The phase-velocity of each mode corresponds to the velocity 
in the parabolic flow of figure 5 at the co-ordinate y of the dot. 
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FIGURE 7. The merging of the vorticity functions ly;] for the higher order modes of figure 4. 
a = 1, R = 2000. The dots indicate the phase velocity a t  the corresponding position 
in the parabolic flow. 
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FIGURE 8. The function 7:" = y:; + iy:; in its complex plane. 

a = 1, R = 2000. 
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FIGURE 9. The eigenfunction $! and & in their respective complex planes. 
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g5& which is similarly situated at the branching point, hence its emergence in 
figure 3. The oscillations in the curvature of the mean flow shown in figure 2 
d m  from the B, and B, modes. 
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FIGURE 10. The eigenvalues c; = ci, + ic;, of the second harmonic 
(n = 2). a = 2, R = 2000. 

We have mapped out the critical amplitude A, as a function of R in the case 

The physical meaning of A derives from the condition that, at  the time t = 0, 
when the initial disturbance is of the first mode. 

the stream function 9 in (2) is given by 

$+ = (y - 4y3) + 2A 93 [$:(y) eiasl, (35) 

where &(y) is the Grst even eigenfunction of the Orr-Sommerfeld equation, 
normalized so that #:(O) = 1, and @ denotes the real part. The fluctuating 
velocity-field imposed initially is derived from the term in brackets in (35). 
It has a distribution across the channel as in the first even mode of the Orr- 
Sommerfeld equation, and its amplitude is proportional to A. When A exceeds 
the critical value A,, the initial disturbance causes the parabolic flow to break 
down after a certain time. 
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The results are shown in figure 11 for the case of a! = 1. A, decreases mono- 
tonically with increasing R, becoming zero on the ‘ neutral curve’, when R = 5815. 
Near R = 5000, the magnitude of the higher harmonics f,(y,t) in (18)-(20) 
decreases rapidly with increasing order n. The rate of decrease becomes less 
rapid as R decreases, so that for R c 1000 our truncation limit of n = 3 is not 
manifestly sufficient. We therefore leave the question open as to whether, in 
the case of plane Poiseuille flow and the type of periodic disturbance we have 
assumed in this investigation, there exists a ‘lower critical Reynolds number’, 
below which any disturbance, of however large an amplitude, eventually dies 
down. 
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FIGURE 11.  The critical value of the smplitudo A, as a function of the Reynolds number R, 
for the case of a disturbance represented by the first mode of the Orr-Sommerfeld equation. 
0: urist,able; 0, stable. 

5. Initial disturbances belonging to the transition modes 
Figure 12 gives the eigenvalues ci of the first harmonic for the case of a = l j  

R = 5000, showing the transition-zone at  v = 12, 13, 14. When the initial dis- 
t’urbance is of the first mode, as in the previous discussion, with initial conditions 
given by (32), (33) and (34), the disturbance is still stable at  an amplitude 
A = 0.00055, but the flow breaks down for A, = 0.00060. The latter instability 
is shown in figure 13. We see that along with the imposed disturbance B,, which 
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becomes unstable at t = 13.7 when (2-f0) first becomes negative (figure 15), 
the modes in the transition zone B,,, B13 and B,, also build up to comparable 
magnitude even before instability sets in. We have accordingly studied the 
development of a disturbance which initially is purely B12, with all the other 

0.90 

0.80 

0.70 

0.60 

0.50 
2- 

b 
0.40 

0.30 

0.20 

0.10 

0 
0 

I 1 -  I 

v = 3 0  

I 

0.2 0.4 

FIGURE 12. The eigenvalues c< = c;,+i& of the first harmonic (n = 1). 
u = 1, R = 5000. 

modes vanishing. The initial disturbance is therefore given by (35), with &(y) 
replaced by #(y). We find that at h = 0.00010 this disturbance dies down after 
building up comparable amplitudes in B,, and B14. When the initial value of 
B,, is 0.00020 (as against 0.00060 above for a B,-type excitation), the flow be- 
comes unstable, as is shown in figure 14. We note again the excitation of the 
other modes 13 and 14 in the transition zone. These modes interfere mutually 
in their development and bring about a rhythmic pulsation superimposed on 
a growing disturbance-level, which resembles the mechanism of the breakdown 
of turbulence proposed by Landau (1944). However, the origin of the pulsation 
shown in figure 14, which is the merging of two types of modes, is different from 
the physical picture envisaged by Landau. 
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FIGURE 13. Development of a disturbance of the first mode, 
with an initial smpIitude B,(O) = 0*00060. u = 1, R = 5000. 
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-+t 

FIGURE 14. Development of a disturbance of the 12th mode, 
with initial amplitude B,,(O) = 0.00020. a = 1, R = 5000. 
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- 1.0 L 
FIGURE 15. The curvature of the mean flow (2-y0) shown in figure 13 

at  the time t = 13.7, when it first becomes negative. 
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